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in solids under ‘pre-threshold’ laser irradiation 
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A F Ioffe Physico-Technical Institute, Academy of Sciences of the USSR, 
194021 Leningrad, USSR 
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Abstract. A universal mechanism for initial defect nucleation in metals and transparent 
dielectrics, as the sample is irradiated by ‘pre-threshold’ laser pulses, is proposed. The 
theoretical model uses the newly described effect of local accumulation of elastic energy due 
to anharmonic parametric resonance between vibrations localised in an inhomogeneity of 
the crystal lattice and laser-produced acoustic waves in the solid. Thermal density fluctuation 
is considered as a universal inhomogeneity of solid matter. The elastic modulus plays the 
role of an excited parameter, and the coupling constant between this parameter and the 
elastic wave is the Gruneisen coefficient. Metals and transparent dielectrics have different 
mechanisms of acoustic wave generation due to laser beam interaction with matter. The 
thermoelastic effect arising due to pulsed heating of the irradiated region is a source of 
acoustic waves in metals. Hyperacoustic waves are generated due to stimulated Brillouin 
scattering in the case of transparent dielectrics. The model explains the main characteristics 
of laser-induced damage in solids subjected to ‘pre-threshold’ irradiation. Quantitative 
estimates have shown that the critical values of the acoustic wave amplitude, under which 
the proposed mechanism is effective. are within the error bars of the experimental values 
for both transparent dielectrics (cu-Al,O,crystals, amorphous S O z )  and a typical metal (AI). 
Several theoretical predictions are compared with original, previously published, results. 

1. Introduction 

Investigations of laser-induced damage (LID) have been carried out for almost 30 years. 
Such investigations have always been stimulated by the need for more perfect optical 
materials, coatings, mirrors, etc. Despite the fact that much of the research has applied 
character, LID studies have been useful in a number of fundamental works in which the 
solid-state theory is developed [l-41. At the same time, no universal conception of the 
LID phenomenon of condensed matter exists. The mechanisms of failure in metals, 
crystals, glasses and polymers proposed earlier usually take into account specific features 
of the named materials. The LID of both metals and dielectrics, nevertheless, have much 
in common. Note, first of all, that there is a cumulative effect, i.e. damage occurs due 
to repeated target irradiation by light pulses, each of which, separately, is ‘safe’ for the 
sample. The cumulative effect of optical irradiation is treated in some papers as the main 
feature of LID [5-81. But the nature of the cumulative effect is still a point for discussion, 
even among researchers dealing with materials of the same class. As to materials of 
different classes, the situation is even more complicated. The cumulative effect has 
been ascribed to the influence of local inhomogeneities of the surface in metals [9], to 
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absorbing impurities in glasses and crystals [lo], and to thermolysis products in polymers 
[ 111, There are a number of possible explanations for the existence of a cumulative effect 
invoking intrinsic LID models as well as impurity mechanisms. 

In this paper we analyse original work, published previously, dealing with the 
cumulative effect of laser-induced damage in dielectrics and metals, paying special 
attention to the coincidence of LID characteristics in these materials when subjected to 
repeated ‘pre-threshold’ irradiation. A common approach to the LID problem for the 
whole class of solids is achieved by way of generalisation of experimental data. The 
mechanism of nucleation of an initial defect (ID), which is the basis of this approach, has 
been developed using a new theoretical model of accumulation of elastic energy as 
the result of laser action on condensed matter. The energy is absorbed by lattice 
inhomogeneities due to parametric resonance between the intrinsic vibrational modes 
of an inhomogeneity and a laser-induced acoustic wave. This leads to local heating of 
the lattice and to deformation of chemical bonds (up to the breaking of bonds). We shall 
attribute this breaking to nucleation of an incipient defect (a pore or a submicrocrack). 

2. Pre-threshold damage 

Macroscopic damage is usually manifested as a spark or plasma flare inside a sample or 
at its surface. The light-pulse power density (Q), or the electric field strength (%), with 
respect to a spark appearing under the action of a single pulse, is taken to be the 
‘threshold’ for optical resistance ( Qth or Zth). However, these parameters do not charac- 
terise the material unambiguously, since their values depend upon the experimental 
conditions. The number of pulses prior to macro-damage, N,, under irradiation with a 
field % < % t h ,  shows the resistance of the material to laser action. By definition, N ,  = 1 
when % = Zth, and it increases as Z decreases. 

Repeated pulse irradiation of a metal at % < %th causes non-plasma surface degra- 
dation visualised by electron microscopy [9] or by indirect methods, such as the emission 
of desorption and evaporation products [12], the generation of an acoustic signal [13], 
luminescence [ 141 and others. By using several complementary experimental 
procedures, one can obtain a complete picture of pre-threshold evolution of a metallic 
specimen, and relate the erosion of microrelief, under multiple-pulse surface irradiation, 
to the particular processes of degradation [ 121. 

In [6,13, 151 surface degradation in metals has been associated with the micro- 
mechanical action of heating and cooling cycles as the result of laser pulse action on a 
sample. By analysing the dependence of the number of pulses, before plasma flare, on 
the value of Q, Bass et af [6,15] have suggested that the residual deformations that 
accumulate around the heating region are the reason for damage under repeated 
irradiation. The authors [6] give a convincing analogy with the cyclic mechanical loading 
of metals, but they do not consider the mechanism of ID nucleation. The latter is often 
connected by experimentalists with isolated surface inhomogeneities, impurities, etc 
[9]. In our opinion, the available experimental data make it possible to propose a general 
theoretical model for intrinsic ID nucleation. Furthermore, it is well known (see, e.g., 
[5 ,  7, 16-20] and elsewhere) that LID of transparent solids under multiple-pulse ‘pre- 
threshold’ irradiation is also the result of irreversible processes stored in the material. 

As a starting point for our model, we accept that the laser defect formed at ‘pre- 
threshold’ field strength is a particular case of mechanical fracture occurring in a dynamic 
stress field. The elastic (acoustic) waves propagating in the condensed medium due to 
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laser interaction with matter are the source of mechanical stress. The nature of acoustic 
wave generation by lasers in metals and transparent dielectrics is different. Therefore, 
we briefly characterise below the conditions for such generation. 

3. Generation of elastic waves on laser interaction with solids 

3.1. Metals 

The acoustic waves arise under pulsed laser heating of a metal surface [13,21-241. The 
mechanism of wave generation changes slightly as the laser power density overcomes 
the ‘threshold’ of plasma flare formation. The temperature of the irradiated region 
increases sharply at Q 2 Qth as a consequence of plasma absorption. As a result, a shock 
wave of thermal breakdown appears, whose amplitude U. is proportional to Q4 [13,23]. 
At Q < Qth apurely thermoelasticeffect isobserved, for which U. - Q [13,21-231. This 
is the case in which we are interested. The characteristic values of amplitude and 
frequency cc) of the thermoelastic wave have been determined reliably in experimental 
work [13,21,24]. We shall use the respective data for numerical estimates of the 
parameters in our theoretical model. 

3.2. Transparent dielectrics 

The acoustic waves appear in transparent dielectrics due to non-linear scattering of the 
intense light by thermal density fluctuations, i.e. the effect of stimulated Brillouin 
scattering (SBS). The experimental observation of SBS made it possible to consider laser 
damage as a particular case of mechanical fracture by laser-stimulated acoustic waves. 
Such an approach was first proposed in [ l ]  and studied theoretically in [25]. The idea 
that SBS is associated with LID was repeatedly mentioned in the literature [26-301. The 
experimental data on this problem are quite contradictory (cf. [28-301 and [31-33]), but 
theoretical estimates show that the pressure of a hyperacoustic wave produced by SBS is 
probably insufficient to nucleate a defect [25,26]. Nevertheless, the feasibility of the 
defect appearing under the action of sBs-produced elastic waves is admitted in theoretical 
papers [25-271, provided that: (i) there exist some mechanical concentrators of tension 
(microcracks [25]) , or (ii) additional heating of the laser-irradiated dielectric occurs due 
to electron processes [27]. 

We shall consider a non-linear effect of acoustic wave interaction with large-scale 
thermal density fluctuation, which proves to be sufficient for developing the model of ID 
nucleation. 

4. Thermo-fluctuation theory of initial defect nucleation 

4.1. Mechanical fracture: previous results 

Let us analyse the general physical principles in the theory of ID formation in a stationary 
mechanical field, in order to clarify the mechanism of LID. There are two main concepts 
in the theory of fracture: the structural approach and the thermo-fluctuation approach. 

According to the first approach, the elementary acts of fracture, or breaking of 
interactomic bonds, take place in an immovable lattice under the action of an external 
force concentrated at the structural defects. As an example of such defect concentrators, 
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we mention the Griffith crack [34] and Cottrell[35] and Stroh [36] dislocation clusters. 
An elementary act of fracture is considered in [34-36] as a simple mechanical overcoming 
of near-atomic planes without thermal vibrations of atoms. Here fracture is the result 
of plastic deformation responsible for the generation of defect concentrators. 

According to the other approach, i.e. the Zhurkov kinetic concept of strength [37], 
one should take into account thermo-fluctuations in order to describe an elementary act 
of fracture. A loaded solid body is considered, within the framework of the kinetic 
model, as an essentially non-equilibrium system, in view of both the developing ensemble 
of defects in the body and the change with time of the phonon mode populations (or 
filling numbers n(k) ,  where k is the wavevector). 

The two approaches are not completely incompatible, as the evolution of defects 
and the evolution of phonon states are interrelated and should lead to macroscopic 
fracture because of the intrinsic instability of the ensemble of atoms (at least, in the case 
of tensile stress). From the theory of non-equilibrium systems it follows [38] that any 
instability in a system of atoms (including the instability leading to damage) should be 
developed from large-scale (giant) fluctuations (LSF) having average dimension L 9 ro,  
where yo is the atomic parameter. The LSF can be considered as a nucleus of dissipative 
structure, which exchanges energy and mass with its environment. A theory of such 
‘damaging’ thermal fluctuations, in the one-dimensional case (a loaded atomic chain), 
has been proposed in [39]. The idea of the theory is the following. The LSF is the 
spontaneous dynamic inhomogeneity, i.e. the negative density fluctuation with linear 
dimension close to the path length of thermal phonons. Since the sound velocity C ;  in 
the region of the LSF differs from that in the unstretched chain ( C , ) ,  the fluctuation 
exchanges energy with the environment due to the flow of thermal (short-wave) phonons. 
Under certain conditions energy accumulation is higher than that lost through scattering, 
which leads, owing to the vibrational anharmonicity of the chain, to local heating of the 
region involved in fluctuation, and steady stretching of interatomic bonds up to their 
breaking in the LSF. The local deformation E and temperature T are the critical par- 
ameters of the ‘damaging’ LSF. They are expressed as [39]: 

where kB is the Boltzmann constant, frr is the theoretical strength of the chain, and g is 
the Gruneisen coefficient. At E < E ~ ~ ,  the LSF relaxes rapidly by releasing energy into the 
environment. At E z .zcr, the LSF absorbs energy from the environment, which causes 
chain disintegration (fluctuation instability). Thus, a loaded solid body obtains an initial 
defect. The concept of ‘damaging’ LSF described as quasi-particles (‘dilatons’ [39]) is 
developed in [39--421 applied to the case of a body loaded by a static mechanical stress. 

4 .2 .  Laser-induced damage 

In this paper we consider a parametric mechanism for irreversible LSF growth in the field 
of a laser-produced acoustic wave. The parametric mechanism in this case is different 
from that described briefly above, as the wavelength of the wave is A S L (where L is 
the dimension of the inhomogeneity), in contrast to the case of static stress, where the 
wavelength of thermal phonons is much less than L.  The mechanism of defect formation, 
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as a result of the laser-stimulated acoustic waves, suggests that intrinsic vibrations (IV) 
of the inhomogeneity (here, LSF) should be amplified due to parametric resonance 
between these vibrations and the long-wave (compared with the LSF dimension) per- 
turbation. The amplified amplitudes of certain modes, u,(t), grow with time until the 
absorbed energy causes breaking of bonds in the inhomogeneity due to thermal expan- 
sion of the lattice. To obtain the conditions of such a parametric pumping, we make a 
detailed analysis of the interaction of acoustic waves with a negative density fluctuation. 
We represent the LSF as some anharmonic inhomogeneity, with dimension L Q A ,  
characterised by tensor G of the modulus of elasticity and anharmonicity tensor A .  
Suppose that this inhomogeneity involves small IV (say, of thermal origin): 

Au,(F, t )  = Au,(F) exp(iw,t) 

where Au,(F, t) is the shift vector in the nth mode, Tis the spatial coordinate, and U, is 
the frequency of the respective mode. These vibrations arise as a consequence of solving 
the equation of motion of the inhomogeneity in the harmonic approximation, 

pii = G :  (aY/ar) (3) 

Au,Is = 0 A = O  (4) 

with corresponding boundary conditions, 

where pis theinhomogeneitydensity, Yis the deformation tensor, Sis the inhomogeneity 
surface and ( : ) is the designation of scalar dyad. Let us express the potential energy of 
the inhomogeneity, U ,  and the stress tensor, p, by [43]: 

U = (1/2)G: : PY + (1/3!)A : : : YYY 

pii = (G + A : f i  : (8 Y/ar). 

( 5 )  
where the equation of motion of the inhomogeneity in the anharmonic approximation 
has the form 

(6) 
Let us consider the interaction of the inhomogeneity IV with a longitudinal acoustic plane 
wave propagating along the x axis, and providing the medium shift U, = uo sin( ut + kx). 
Here w Q CO, due to the condition of the long-wave approximation (A + L) .  This wave 
stimulates a slow deformation of the inhomogeneity, U: = uo sin(o't + k ' x ) ,  compared 
with the frequency of IV. The shifts U, and U: are matched at the boundary in the long- 
wave approximation with accuracy up to small terms, which are linear in the parameter 
L/A. By substituting the atomic shift, U = U, + Z Au,,, into the equation of motion (6), 
and using the condition 1 U '  1 + Iu,/, we can divide equation (6) into two equations, one 
for the forward wave and another for the fast IV inside a slowly deforming inhomogeneity: 

pAii, = [G + A : Y + A : (du'/ar)] : (d2Au,/dr2) (7) 
where du' ldr is the deformation tensor of the acoustic wave. Equation (7) for Aun(F, t) 
can be rewritten for the time-dependent amplitudes Au,(T, t )  = Au,(F)A,(t) in the form 
of a Mathieu function describing the parametric resonance: 

d2A,( t ' ) /dff2 + [a, - 2q, c0~(2t')]A,(t') = 0 (8) 
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ac a, Figure 1. Mathieu equation instability diagram. 

Here t' = wt/2; the right-hand sides of equations (9)  and (10) are given for the case of 
an inhomogeneity in the form of a cube oriented normal to the axis (a model that is easy 
to calculate). The general solution for equation ( 9 )  has the form [44]: 

z 

(11) z c- e-2r1t' A ept' c~~ e2rlr + B e-"" 2r 
r =  --r r =  --3: 

% 

(12) A epr' c*~+, e(2r+l) l t '  + B e-pr' c - ( ~ ~ + ~ )  e-(2r+1)izJ I .  r =  I --5c r =  --r 

A , ( t ' )  = 

where A and B are real numbers, r is an integer, C2r and C2r+l are the amplitudes of the 
Bloch wave, and ,U is the characteristic index. Equation (11) is applicable if point {an, qn} 
lies between the curves a2,, and b2n+l (or between a2n+2 and b2n+2) of the steady-state 
diagram (figure 1). Equation (12)  is valid if point {an, qn} lies between the curves a2n + 

and b2n+2 (or aZn+ and b2,,+ l) .  If ,U is a real number, the solution of equations (11) and 
(12) is unstable, i.e. An( t )  + CO, which corresponds to the excitation of the nth mode and 
pumping of energy into the inhomogeneity. The energy pumping occurs in this case 
with rate ,U = { [ ( a ,  - a,)/(a, - b,)]/2m}'/2, where m is the number of the resonance. 
Mathematically, this condition corresponds to the localisation of point {an, qn} into the 
hatched region of figure 1. 

Let us use the results of our analysis (equations (9)-(12)) applied to LSF. As LSF 
parameters we choose the following data: 

(i) The dimension of LSF is L = A, where A is the average path length of thermal 
phonons, which can be estimated by the formula [45] 

A = M C : r o / k B  Tg (13) 

where M is the atomic mass. 

is close to the mean-square density fluctuation, and has temperature T'  = T.  
(ii) The substance density in the LSF, with respect to the degree of bond stretching, 
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Let us assume that all normal modes of vibration in the LSF region are thermally 
excited, i.e. their amplitudes are determined by the expression [45]: 

As follows from equations (9) and (lo), a, - A 2 ,  q, - A and A lies in quite a wide range. 
Therefore, the parametric resonance condition can be fulfilled for the mode with number 
n. This mode proves to be resonant relative to the acoustic wave, and determines the 
transition of part of the thermoelastic perturbation energy into LSF excitation energy. 
Since this excitation occurs within a finite time, t = t * ,  close to the characteristic time of 
the acoustic wave damping, t* = (2/a,)Ci. Here 2/a, is the path length of an acoustic 
phonon. There are two possible situations: 

(i) Within time t* the LSF so heightens the vibration amplitude of the resonant mode, 
u,(t*), that the deformation E ,  = un(t*)  = Efr = 1/2g of the bonds, due to the nth mode, 
proves to be close to rupture. After that, the LSF is broken and a submicrocrack appears, 
i.e. an initial defect. 

(ii) Time t* proves to be so small that the energy absorbed by the inhomogeneity is 
insufficient to rupture the bonds ( E ,  < Efr).  

Our task is to evaluate the amplitude of the acoustic wave for the case (i). The 
amplitude of the resonant mode u,(t) increases exponentially with time (if point {a,, 4,) 
is in one of the instability regions of the Mathieu equation), and is expressed by [44] 

u,(t) = u,(O) eunf (15) 
where the amplification rate is ,U, = 10-"qm(8m)-"*. (Here {am, qm} are the points of 
figure 1 corresponding to the intersection of the line q,  = const with the characteristic 
steady-state diagrams of the Mathieu equation with the point {a,, 4,) lying between 
them.) Increasing the amplitude leads to an increase in the maximum of the local 
deformation in the node of the standing wave with number n: 

E ,  = u,(t)2nn/A. (16) 
As soon as E ,  = efr = 1/2g (i.e. the deformation is close to the rupture deformation, Efr) 
the inhomogeneity is broken. From equation (16) it follow that the amplitude of the nth 
mode, at that moment, is u,(t) = 4nAng. Taking into account this expression for the 
amplitude, we get from equation (15) the condition for the inhomogeneity breaking 
within time t < t*:  

By substituting u,(O) from equation (14) and p,, from equation (15) into this condition, 
we obtain that damage is possible starting from some critical amplitude U,, expressed by 

By comparing this with experiment we take, for convenience, that CI = C; and A = 
2nCi/w. Then the condition for defect formation becomes 
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4.3. Numerical estimates 

We shall estimate U,, for a metal (Al) and two dielectrics ( a-A1203 and vitreous S O 2 ) ,  for 
which we have found, in the literature, all the necessary parameters for the calculation. 

The frequency of the acoustic waves produced under a 'pre-threshold' laser action 
on metals is 1-10 MHz [22,24], the path length of thermal phonons in A1 is 2 X cm 
[43], the sound velocity is 6 x lo5 cm s-l and g = 2. By substituting these values into 
(19) we find that U,, = 10-'o-lO-" cm for the excitation of mode 1-2. This value is 
much less than the amplitude of laser-stimulated thermoelastic waves found by direct 
measurements [21] under pre-threshold irradiation of aluminium, U ,  = (1-10) 
X lo-' cm. Hence, the condition U ,  > U,, can be fulfilled for this metal and the non- 
linear interaction of the acoustic wave with the LSF may lead to the formation of a defect. 

For dielectrics, A is 5 X lO-'cm [46] and 8 X 10-scm [47], and CI is 1.1 X lo6 
and 1 x lo5 cm s-l for a-A1203 and Si02,  respectively. Let us take also that w/2n = 
2 x 1010 Hz [48]. Then, by using equation (19) we find that U,, - lo-'' cm for a-Al2O3 
and U,, -- 0.3 x lO-'Ocm for Si02.  

The source of acoustic waves on laser interaction with a transparent dielectric 
is stimulated Brillouin scattering (SBS). We do not know of any work on the direct 
measurement of the sss-produced hypersonic amplitudes and, therefore, make a semi- 
empirical estimate of U ,  and compare it with U,, calculated above. 

The mean intensity of hypersound, I,, at SBS can be evaluated by the following 
formula [47], verified experimentally [48]: 

Here y S 1 is the photoelastic constant of the material, eo and p O ,  respectively, are the 
dielectric and magnetic permeability, c is the light velocity, EO is Young's modulus and 
ap is the path length of the hypersonic phonon. The acoustic wave intensity is connected 
with the amplitude by the following relation: 

I ,  = gc,pw2ua. (21) 
By equating the right-hand sides of equations (20) and (21), and taking Q = 
find the dependence of U ,  on the field in a laser beam: 

we 

From the latter equation it is seen that U ,  - Q ,  as in the case of metals. For S i02  and a- 
A1203 we have E~ = 2, p = 4.0 and 2.6 g ~ m - ~ ,  Eo = 6 and4 GPa, and t* = 7 X lO-'and 
4.5 x lO-'s [49], respectively. 'Threshold' optical resistances of both dielectrics in the 
nanosecond pulse region are approximately the same, Ceth = (1-5) X lo5 V cm-'. By 
substituting 8 = lo5 V cm-' in equation (22) we calculate the maximum possible ampli- 
tude of hypersound (without sample damage due to the first light pulse): U ,  = cm 
for Si02 and 2 x lo-' cm for a-A1203. The condition U ,  2 U,, is fulfilled and, therefore, 
ID may be formed due to the interaction of elastic waves with LSF for transparent 
dielectrics. 

It is interesting to note that U,, for metals is close to U,, for dielectrics, due to equation 
(19), where U,, - A2. Although the path length of phonons in metals differs by two 
orders of magnitude from that in transparent dielectrics, the hypersonic frequency 
of 1O1OHz in dielectrics differs by four order of magnitude from the frequency of 
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thermoelastic waves in metals (-lo6 Hz), and the product Am2 proves to be the same 
for metals and dielectrics. 

5. Thermo-fluctuation nature of inhomogeneities 

It is evident that the mechanism of ID formation via a non-linear interaction of the elastic 
waves with the inhomogeneity of a crystal lattice can also be developed for stable 
structural or even impurity inhomogeneities. For example, laser breakdown of a liquid 
may occur due to the interaction of sss-produced hypersound with intrinsic vibrations 
of solid impurity particles. Such an approach would, however, deprive the proposed 
mechanism of its universality, as one would have to suggest the existence of inhomo- 
geneities with admissible parameters, such as dimensions, density, spectrum of 
vibrations, etc. Having chosen LSF as the inhomogeneity, we have developed an intrinsic 
mechanism of ID formation. Its efficiency depends solely on the laser intensity and the 
physical constants of the material (path length of phonons, Gruneisen coefficient, elastic 
constants, etc). The numerical estimates performed justified the validity of the chosen 
model of inhomogeneity. Besides, one can verify experimentally some qualitative fea- 
tures of the thermal atomic motion that are typical of the process of ID formation. Such 
features are the dependences of the critical field of ID formation on the temperature and 
external stress of the sample. The proposed effects are a consequence of the dependence 
of thermal phonon path length on temperature T and stress a. For experimental veri- 
fication, we get expressions that relate %,, with T and cr. 

Let us use the estimates for the phonon path length in transparent dielectrics from 
[45]: 

E = (or:  + g k B  T ) / E o r i .  (25) 
By equating the right-hand sides of equations (19) and (22) and using the expressions 
(23)-(25), we get an estimate for the critical field: 

For metals, U ,  - Q (pre-threshold irradiation), ucr - A' (from equation ( 1 9 ) ) ,  and 
taking Q = & c % ~ ,  we get 8,, - A - ( 1  - 2ga/E0) .  It is seen that this relation is analogous 
to equation (26) for dielectrics. 

5.1. Optical resistance of stressed solids 

Supposing that (i) material resistance to the action of repeated laser pulses is determined 
by the kinetics of microdefect accumulation and (ii) the accumulation rate depends on 
%,,,we tried to find a relation between gCr and a in  experiments on multi-pulse irradiation 
of stressed samples. 

As dielectric samples we used optical fibre of 125 pm thickness. The quartz glass for 
the fibre is produced by chemical deposition of gaseous SiCl,, i.e. the samples were 



4076 A Kusov et a1 

N* l o 2  

IO0 

0.0 GPO 
2.1 GPa 

4.0 GPO 
- 

( i o 5  v “‘I 

U iGPo1 

Figure 2. Number of laser pulses, N * .  needed 
for damage as a function of field strength in the 
stressed quartz glass fibre. 

Figure3. Breakdown fieldstrength,%, ver- 
sustensilestress, o,onthesurfaceofquartz 
glass. 

highly pure and geometrically perfect. The fibres were stressed by means of bending 
with a fixed radius of curvature; the tensile stress on the surface with greater radius was 
calculated by the method described in [50].  A neodymium glass laser with 60 ns pulse 
duration was the source of radiation in these and other experiments. The light beam was 
focused onto the convex surface of a bent fibre into a 0.07 cm diameter spot. 

The influence of tensile stress on the ‘waiting time’ of damage appears in the depen- 
dence of N ,  versus % at B = const. The respective graph was plotted on semilogarithmic 
coordinates (figure 2); the intersection of the graph lines with the line N = 1 gives the 
value of Eth at which the sample is damaged in one shot. The sought dependence of Eth 
versus B extracted from figure 2 is shown in figure 3 .  As predicted theoretically, zcr 
decreases as B increases. 

Analogous measurements were taken on metal. The samples were commercial gold 
foils with 99.99% content of pure material. The upper end of a metal strip, of 0.2 mm 
width and 50 pm thickness, was fastened in a movable gripping device, which provide 
mutually perpendicular motion of the sample in the focal plane of a lens. To the bottom 
of the sample was fastened the tensile load. Each point of the sample was irradiated up 
to the appearance of the damage flash, as in the case of loading of the quartz fibre. 

The measurement results are shown in figure 4. Despite a large spread in the 
experimental points, one can observe the tendency to a reduction of optical resistance 
with the growth of tensile stress. 
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Figure4. Breakdown field strength, %, versus 
sile stress, U ,  on a gold foil. 

ten- 

Table 1. Number of laser pulses before plasma flare at various temperatures of metal target. 

Temperature, T ( T )  

Metal tp(s) 8 ( io5 V cm-') 20 65 170 

Ag 6 x 10.0 13560 - 60 
Ag 5 x 10-4 0.5 100 13 3 
Au 6 x 2.5 210 24 2 
Ni  6 x 0.2 30 - 1 

Pulse duration, Field strength, 

5.2. Temperature dependence 

The temperature dependence of the path length of thermal phonons determines the 
temperature dependence of LID in our model. The decrease in laser strength with 
increase in temperature of the sample is a well known effect for transparent dielectrics 
[16,51,52]. The temperature dependence (as well as the dependence on field) should 
be equally typical of LID not only of dielectrics but of metals as well, in accordance with 
the thermo-fluctuation model. 

The experimental data confirm the theory, e.g. the number of pulses needed to 
obtain damage decreases noticeably on heating of the metal sample even by several tens 
of degrees (table 1). Thus, decreasing the threshold of ID formation on heating leads to 
a faster accumulation of defects, which in turn reduces the 'waiting time' of macroscopic 
breakdown. 

5.3. Time dependence 

We examined the dependence of optical resistance on T and 0 under multi-pulse 
irradiation of a sample, and have made only a qualitative verification of equation (26 ) ,  
since this equation determines the value of the critical field for formation of a single ID, 
while we could record the formation of macroscopic damage. In other words, we assumed 
implicitly that the 'waiting time' of damage (the summary irradiation time) is determined 
by evolution of the ID ensemble. Remember that the thermo-fluctuation approach to 
LID was first considered in studying the damage kinetics under repeated irradiation [7,8], 
The dependence of the number of shots before damage on the field was found to be 
exponential for transparent dielectrics [7,8,16]. Graphically, the dependence of log N ,  
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Figure 5.  Number of pulses, N * ,  before 
damage versus field strength and tem- 
perature for metals. 

on % is plotted in the form of straight lines, and their slope decreases with increase in 
sample temperature. The experimental dependence of Boltzmann character 

N ,  - exP[U(w/kB 7-1 (27) 

where U ( % )  is the damage activation energy, made it possible to consider that the 
dependence of the number of pulses before breakdown on the experimental conditions 
is governed by the kinetics of submicroscopic defects produced in a thermo-fluctuation 
manner [8]. 

The thermo-fluctuation mechanism of LID is equally applicable to both transparent 
dielectrics and metals, so one might expect that the exponential dependence of N ,  on 
inverse temperature is fulfilled for metals as well. The result of measuring N,, for 
different fields in a pulse, is shown in figure 5. When our data for log N ,  are plotted as 
a function of %, they lie on a ‘bundle’ of straight lines meeting at one point. Hence, 
equation (27) is also valid for metals. 

(Our experiments were performed in air; therefore, we refer the conclusion only to 
Au and Ag having no oxide films on a newly cleaned surface. For Ni we have observed 
deviation from straight lines in the region of the first few tens of pulses, which seems to 
be due to purification of the sample surface from impurities and oxide films during the 
first few pulses.) 

The result obtained for metals justifies a thermo-fluctuation approach to choosing 
the type of inhomogeneity as the source of the future defect; secondly, it gives an 
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Figure 6.  Time, r ,  needed for mechanical failure 
of silver foil versus tensile stress, U ,  and tem- 
perature. 

additional argument for consideration of LID as a specific case of mechanical fracture 
under dynamic stress at an atomic scale level. 

The ‘waiting time’ of mechanical fracture on static loading depends, analogously, on 
stress and temperature (figure 6) [53] ,  i.e. at least the temperature-time behaviours of 
mechanical and laser damage coincide. Note that Bass er a l [ 6 ]  also suggested that the 
‘mechanical’ nature of laser defects should be verified through the analogous behaviours 
of dependences of number of laser pulses needed to produce macro-damage versus Q 
and number of stress cycles required to cause mechanical failure versus U. 

6. Conclusions 

The main results of the work are as follows: 
A theoretical model is proposed for the non-linear interaction of elastic waves with 

a lattice inhomogeneity in solids. 
A new approach to the formation of an initial defect under the action of optical 

irradiation has been developed on the basis of this model, where (i) a thermoelastic effect 
inmetals and stimulated Brillouinscattering in transparent dielectrics were considered as 
the source of elastic waves under laser irradiation and (ii) a large-scale thermal density 
fluctuation (with dimension of a thermal phonon path length) was assumed to be a 
universal inhomogeneity always available in a condensed medium. 

The numerical estimates were made on the basis of experimental data, which confirm 
the possibility of defect formation according to the proposed mechanism. It is shown 
experimentally that the model is in qualitative agreement with the main trends of laser 
damage induced by a multi-pulse ‘pre-threshold’ irradiation. 
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